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SUMMARY

In this paper we develop an adaptive finite element method for heat transfer in incompressible fluid flow.
The adaptive method is based on an a posteriori error estimate for the coupled problem, which identifies
how accurately the flow and heat transfer problems must be solved in order to achieve overall accuracy
in a specified goal quantity. The a posteriori error estimate is derived using duality techniques and is of
dual weighted residual type. We consider, in particular, an a posteriori error estimate for a variational
approximation of the integrated heat flux through the boundary of a hot object immersed into a cooling
fluid flow. We illustrate the method on some test cases involving three-dimensional time-dependent flow
and transport. Copyright q 2008 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Coupled multiphysics models appear in many real-world applications that involve several different
types of physics that interact in space and time. Such problems are often solved numerically by
connecting individual single physics solvers that handle each physics involved in the problem.
It is then important to derive an efficient error estimation procedure that targets a specified goal
quantity in the overall multiphysics problem and, in particular, identifies the influence of errors in
the single physics solvers on the overall goal. On the basis of such error estimates we can develop
adaptive algorithms that automatically determine a local mesh resolution for the individual solvers
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tailored for efficient computation of the specified overall goal quantity. In this work we take a step
in this direction and consider a model problem involving coupled time-dependent heat transfer and
incompressible fluid flow, a common multiphysics problem in engineering applications.

Recently, there has been an increasing research interest in adaptive methods for multiphysics
problems. A general framework for adaptive multiphysics solvers is presented in [1], where
an application to microelectromechanical systems involving electrostatics, heat conduction, and
elasticity is presented. In [2] pressure-driven transport is studied using a mixed method for
the stationary pressure equation and a streamline diffusion method for the transport equation.
Furthermore, recent closely related work is presented in [3, 4], where one-way-coupled and fully
coupled elliptic systems are considered. We also mention a posteriori error estimates for operator
splitting methods [5].

In this paper we start from the approach developed in [1], and derive an a posteriori error
estimate for the coupled problem involving time-dependent incompressible flow governed by the
Navier–Stokes equations and heat transfer with the advection field given by the fluid velocity.
We restrict our attention to the one-way-coupled case where the fluid flow is independent of the
temperature. Given a goal functional on the temperature field in the transport equation, our approach
identifies a corresponding goal functional for the incompressible flow solver, which defines in
what sense the flow field must be accurate in order to achieve accuracy in the given transport goal
functional. The a posteriori error estimates are derived using duality-based techniques and result in
dual weighted residual estimates with weights accounting for the specified goal functional and the
coupling between the problems. We refer to [6, 7] for the duality-based a posteriori error analysis
on incompressible flow problems and to [8–10], and the references therein for a more general
background on duality-based techniques. Based on the a posteriori error estimates we develop
adaptive algorithms for adaptive mesh refinement [11].

We study, in particular, a specific goal functional representing the total heat flux through the
boundary of a hot object immersed into a cooling fluid flow. Here we make a particular use of a
variational formulation of the flux functional, which plays an important role when computing the
functional as well as for the derivation of the a posteriori error estimate, see [12–15].

Finally, the methodology is illustrated on a three-dimensional test case involving a number of
hot boxes immersed into a channel containing a cooling fluid flow.

The outline of this paper is as follows: In Section 2 we present the model problem and the finite
element methods; in Section 3 we derive the a posteriori error estimates, study the integrated flux
functional, and formulate adaptive algorithms; in Section 4 we present the numerical examples;
and, finally, in Section 5 we make some concluding remarks.

2. MODEL PROBLEM AND FINITE ELEMENT METHOD

2.1. Model problem

As a simple model problem we consider the transport of heat from a number of hot objects by a
cooling fluid. The hot objects are one or two boxes located within a long channel with a square
cross section. The fluid is flowing through the channel from an inlet to an outlet located on the
short sides of the channel, see Figure 1. The boxes are kept at a prescribed temperature and heat
is diffused and advected away from these by the surrounding fluid, which is assumed to have a
lower temperature at the inflow, thereby acting as a coolant on and around the boxes.
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Figure 1. The channel geometry with two interior hot boxes. A cooling fluid is flowing through the
channel. Inlet and outlet are the shaded regions indicated by the arrows.

To describe the geometry of this problem we employ the following notation. The channel domain
is denoted by �⊂R3, and its boundary �� by �. The inflow and outflow parts of � are denoted
by �in and �out, and the walls of the channel by �wall. Further, the sides of the hot boxes lying
within the channel are denoted by �box. Thus, �=�in∪�wall∪�out∪�box. Finally, the outward
unit normal of � is denoted by n. Throughout this paper we shall let boldface letters denote
vector-valued quantities. For example, the usual position vector (x, y, z)∈R3 is denoted by x.

In this paper we make the simplifying assumption that any buoyancy forces within the fluid are
negligible, which means that the tendency for heavy (cool) fluid to sink is very small (cf. [16]).
As a consequence the fluid velocity, uF, is unaffected by the transport of heat within the fluid, and
no new flow phenomena arise due to changes in the temperature of the fluid. In other words, we
end up with a one-way coupled problem in the sense that the fluid temperature, uT, depends on
the fluid velocity uF, but not vice versa.

From a numerical point of view this one-way coupling implies that any errors present in an
approximation,UF, of the velocity uF will contribute to the error in a computation of the temperature
if UF is used as an advection field. Thus, a computed temperature UT≈uT will generally contain
both a discretization error stemming from the numerical method and a data error caused by the
inaccurate advection field UF. We will refer to this data error as the modelling error since it appears
due to the inaccurate specification of the input to the heat equation. We aim at controlling the
propagation of error from UF to UT.

We shall present a methodology for estimating the error in a given target quantity, defined by a
linear functional mT(uT) of the temperature uT. The functional mT(·) expresses the overall goal of
the computation, which can be the accurate computation of uT at a point a∈� or the mean value
of uT in a subdomain �∈�, for instance. In Section 4 we shall let mT(·) be the time-integrated
heat flux out of one of the hot boxes, but we perform the analysis for an arbitrary goal functional
mT(uT).

Our methodology consists of a standard a posteriori error estimation based on duality arguments
(see, e.g. [8, 9] for overviews of these techniques). The basic idea is to transform the modelling
error for the heat transfer problem into a discretization error for the fluid flow problem via a
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Figure 2. Schematic picture illustrating how to determine the target quantity mT(uT). The
flow of primal data (i.e. the advection field uF) is indicated by the white arrow and the

dual data flow by the shaded arrows.

particular choice of the dual problem. We summarize the methodology as follows:

1. Start by computing the fluid velocity UF. Use UF to compute the fluid temperature UT.
2. Solve a dual heat problem associated with the given goal functional mT(·) for the dual

temperature �T. A straightforward calculation shows that the error inmT(·) (i.e.mT(uT−UT))
consists of a discretization error for UT and a modelling error mF(·) involving the velocity
error uF−UF.

3. To keep the modelling error small, let mF(·) be the goal functional for the fluid flow problem
and solve an associated dual flow problem for the dual fluid velocity /F.

4. The dual information �T and /F indicate the domain of influence for the functionals mT(·)
and mF(·), that is, regions of � where it is important to compute the fluid velocity UF and
temperature UT accurately. The key point is that by choosing mF(·) as the goal for the fluid
flow problem the modelling error of the previous heat transfer problem transforms into a
discretization error for UF. Moreover, since we assume input to be exact for the fluid flow
problem the only source of error for UF is the discretization error. Thus, we end up with
two discretization errors, one for UT and one for UF, which can be kept small via standard
a posteriori estimates together with the adaptive mesh refinement.

5. The procedure is repeated until a mesh yielding a sufficiently accurate value of mT(·) has
been obtained.

In Figure 2 we illustrate the procedure for estimating mT(uT−UT) described above.
Finally, we wish to stress the fact that the main objective of this paper is not to provide numerical

results for a specific physical application, but to present a method for efficient computation of a
given goal quantity.

2.1.1. Governing equations. The motion of the fluid is governed by the incompressible Navier–
Stokes equations that take the form: find the velocity uF=uF(x, t) :�× I →R3 and the pressure
p= p(x, t) :�× I →R such that

u̇F+uF ·∇uF−��uF+ 1

�
∇ p= f, (x, t)∈�× I (1a)

∇ ·uF=0, (x, t)∈�× I (1b)

uF=vin, (x, t)∈�in× I (1c)

uF=0, (x, t)∈�wall∪�box× I (1d)
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�n·∇uF− 1

�
pn=0, (x, t)∈�out× I (1e)

uF(·,0)=0, x∈� (1f)

where � is the kinematic viscosity, � is the (constant) density of the fluid, and f=0 is a body force
term, which is zero due to the absence of buoyancy forces (cf. Remark 2.1). Further, u̇F is the
derivative �uF/�t with respect to time t and I =(0, T̂ ) is the time interval with final time T̂ . A
given velocity profile vin is prescribed on the inflow, and on the outflow we use the ‘do nothing’
boundary condition (1e) (see [17]). All the other boundaries have no-slip boundary conditions.

The equation for the heat transfer takes the form: find the temperature uT=uT(x, t) :�× I →R
such that

u̇T+∇ ·(uFuT−�∇uT)=0, (x, t)∈�× I (2a)

n·(uFuT−�∇uT)=�(uT−g), (x, t)∈�× I (2b)

uT(·,0)=0, x∈� (2c)

where uF is the advection field induced by the Navier–Stokes equations (1), � is the thermal
diffusion parameter of the fluid, � is a given function describing the heat transfer coefficient to
the ambient media, and g is the temperature of the ambient media.

Remark 2.1
Temperature effects on the fluid velocity can under certain assumptions be modelled by the
Boussinesque approximation in which a buoyancy force term of the form f=−�g(uT−u∞) is
added to the momentum equation (1a) with u∞ being a reference temperature, � the thermal
expansion coefficient of the fluid, and g=[0,0,−1]T (cf. [18]). However, note that the addition
of a buoyancy force yields a more intricate two-way coupling between (1) and (2) since uF in
this case will depend on uT and vice versa. We refer to [19] for a discussion of error estimation
techniques for fully coupled problems.

2.2. Variational formulations

Before we proceed any further let us introduce some notations that will be of frequent use. We let

(v,w)� =
∫

�
v ·wdx (3)

denote the L2 inner product on the set �. When �=� we shall for brevity write (·, ·)=(·, ·)�. The
L2 norm of v on � is denoted by ‖v‖� =√

(v,v)�. In order to state the variational formulation of
(1) and (2) we need to define the appropriate function spaces for the velocity pressure pair (uF, p)
and the temperature uT. Therefore, let H1

0(�)={v∈[H1(�)]3 :v|�\�out =0}, and
VF= L2(I ;H1

0(�)×L2(�)) (4)

VT= L2(I ;H1(�)) (5)

where L2(I ; X) is the space of functions v : I → X such that
∫
I ‖v(·, t)‖2X dt<∞, with X being a

normed vector space.
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Let uin∈H1
0(�) be a suitable extension of the inflow velocity profile vin to the whole domain �.

The variational formulation of the Navier–Stokes equations (1) reads: find (uF, p)∈(uin,0)+VF
such that

aF((uF, p), (v,q))=0 ∀(v,q)∈VF (6)

where the space–time nonlinear form aF(·, ·) is defined by

aF((uF, p), (v,q))=
∫
I
(u̇F,v)+(uF ·∇uF,v)+�(∇uF,∇v)− 1

�
(p,∇ ·v)−(∇ ·uF,q)dt (7)

For the heat transfer problem (2) the variational formulation reads: find uT∈VT, such that

aT(uF;uT,w)= lT(w) ∀w∈VT (8)

where the bilinear and linear forms aT(·, ·) and lT(·) are defined by

aT(uF;uT,w)=
∫
I
(u̇T,w)−(uFuT,∇w)+(�∇uT,∇w)+(�uT,w)� dt (9a)

lT(w)=
∫
I
(�g,w)� dt (9b)

Combining the variational form for the Navier–Stokes and heat transfer equations we obtain the
coupled problem: find (uF, p)∈(uin,0)+VF and uT∈VT such that

aF((uF, p), (v,q))=0 ∀(v,q)∈VF (10a)

aT(uF;uT,w)= lT(w) ∀w∈VT (10b)

2.3. Discrete spaces

Let K a be a shape regular [20] mesh of � consisting of hexahedra or tetrahedra K with diameter
hK =diam(K ), and let Vh ⊂H1(�), Vh ⊂H1

0(�), and Qh ⊂ L2(�), be three spaces of continuous

piecewise polynomials onK. Further, let 0= t0<t1< · · ·<tN = T̂ be a partition of the time interval I
into N subintervals In =(tn−1, tn], n=1, . . . ,N , of length kn = tn− tn−1.

On each space–time slab Sn =�× In we define the following function spaces that we shall use
as trial and test spaces for the finite element method to be introduced next:

Vq
n ={(v,w) :(v,w)(·, t)∈Vh×Qh, (v,w)(x, ·)∈Pq ×Pq} (11)

Wn =V0
n (12)

Vq
n ={v :v(·, t)∈Vh,v(x, ·)∈Pq} (13)

Wn =V 0
n (14)
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where Pq is the space of polynomials of degree not exceeding q on In . The corresponding ‘global’
spaces on �× I are given by

VF,h,n ={(v,w) :(v,w)|Sn ∈V1
n,n=1, . . . ,N , and (v,w) continuous w.r.t. time} (15)

WF,h,n ={(v,w) :(v,w)|Sn ∈Wn,n=1, . . . ,N } (16)

VT,h,n ={v :v|Sn ∈V 1
n ,n=1, . . . ,N , and v continuous w.r.t. time} (17)

WT,h,n ={v :v|Sn ∈Wn,n=1, . . . ,N } (18)

We also need to introduce two interpolation operators onto the discrete spaces. Let �T :VT→
WT,h,n be the interpolation operator obtained by combining the Scott–Zhang [21] interpolation
operator with a projection operator onto the space of piecewise constants on the time partition
{tn}N0 . That is, �Tv on the slab Sn =�× In is the Scott–Zhang interpolant on Vh for x∈� and the
average of v on In for t ∈ In . Further, let �F :VF→WF,h,n be the vector-valued analog to �T. As
it will always be clear from the context which interpolation operator we refer to, we will drop the
subscripts on �T and �F and simply write � from now on.

2.4. Finite element approximation

A prototype finite element method for the coupled problem (10) takes the form: find (UF, P)∈
(uin,0)+VF,h,n , and UT∈VT,h,n such that

aF((UF, P), (v,q))=0 ∀(v,q)∈WF,h,n (19a)

aT(UF;UT,w)= lT(w) ∀w∈WT,h,n (19b)

Remark 2.2
The finite element method (19) is a standard space–time Galerkin method for the coupled problem
(10) and has to be modified for nearly all practical purposes to yield useful numerical results.
For example, to obtain a unique solution it is necessary for the velocity and pressure spaces Vh
and Qh to satisfy the so-called inf–sup condition, cf. [20]. This generally excludes the use of
equal-order interpolation spaces unless some stabilization term for the pressure is added to the
incompressibility equation (1b). Stabilization terms (see, e.g. [22]) are also necessary for both the
Navier–Stokes equations and the heat transport equation in order to make simulations of fluids
with small viscosity � and thermal diffusion coefficient �. We shall briefly return to these issues
in the numerics section.

Remark 2.3
The reason why we formulate a prototype method is that we want to focus on the error analysis,
which usually does not depend on the particular type of discretization to any large extent. For
simplicity of presentation we therefore argue that it suffice to study (19). We stress that the error
estimation technique we present may be employed for many different finite element methods with
only minor modifications.
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3. A POSTERIORI ERROR ESTIMATES

3.1. Error representation formula for the coupled problem

Let mT(uT) be a linear functional of the temperature uT∈H1(�) expressing the goal of the
computation. To derive an error representation formula for mT(·) we introduce the following dual
heat transfer problem: find �T∈VT such that

mT(v)=aT(UF;v,�T) ∀v∈VT (20)

Setting v=uT−UT and using the definition of the dual problem (20) we obtain

mT(uT−UT) = aT(UF;uT−UT,�T) (21)

= aT(UF;uT,�T)−aT(UF;UT,�T) (22)

= aT(UF;uT,�T)−aT(uF;uT,�T)

+aT(uF;uT,�T)−aT(UF;UT,�T) (23)

= aT(UF;uT,�T)−aT(uF;uT,�T)

+ lT(�T)−aT(UF;UT,�T) (24)

= aT(UF;uT,�T)−aT(uF;uT,�T)

+ lT(�T−��T)−aT(UF;UT,�T−��T) (25)

where we have used the Galerkin orthogonality property to subtract an interpolant ��T∈WT,h,n .
Defining the weak residual RT(UT)∈V ∗

T , where V ∗
T is the dual of VT, by

〈RT(UT),v〉�×I = lT(v)−aT(UF;UT,v) ∀v∈VT (26)

where 〈·, ·〉 denotes the duality pairing between VT and V ∗
T , and introducing the functional mF(·)

defined by

mF(uF−UF)=aT(UF;uT,�T)−aT(uF;uT,�T) (27)

we obtain the error representation formula

mT(uT−UT)=〈RT(UT),�T−��T〉�×I +mF(uF−UF) (28)

The first term on the right-hand side of (28) is the discretization error caused by the finite element
approximation and the second term can be interpreted as a modelling error stemming from the
approximate advection field UF.

The discretization error may be estimated using the dual weighted residual method (see, e.g.
[8]), and can be controlled using standard adaptive mesh refinement [11] techniques. The modelling
error mF(uF−UF) accounts for the effects of errors within the computed flow field on the specified
output functional mT(·). To estimate the modelling error functional mF(·) we are naturally led to
deriving a duality-based a posteriori error estimate for the finite element approximation of the flow
problem (1), with the modelling error as a goal quantity. In other words, the desired goal quantity
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for the flow problem (1) is the modelling error from the heat transfer problem (2). Note that the
goal functional mF(·) appears naturally when applying the duality-based error estimation approach
above on the heat equation and depends on the information from both the dual and primal heat
transfer problems.

3.2. Estimates of the discretization error for the heat transfer

To estimate the discretization error we proceed as follows:

〈RT(UT),�T−��T〉�×I = lT(�T−��T)−aT(UF;UT,�T−��T) (29)

=
∫
I
(�(g−UT),�T−��T)�−(U̇T,�T−��T)

−(�∇UT,∇(�T−��T))+(UFUT,∇(�T−��T))dt (30)

Expressing this as a sum over the elements and using partial integration we obtain

〈RT(UT),�T−��T〉�×I = ∑
K∈K

∫
I
−(U̇T,�T−��T)K

+(��UT,�T−��T)K + 1

2
(�[n·∇UT],�T−��T)�K\�

−(∇ ·(UFUT),�T−��T)K +(−�n·∇UT+n·UFUT

+�(g−UT),�T−��T)�K∩� dt (31)

The term [n·∇UT] denotes the jump of the normal derivative of UT, and appears since n·∇UT is
not continuous across the element boundaries. The terms on the boundary � account for the fact
that the boundary conditions are only weakly enforced by the finite element method.

Noting that the residual on each element K consists of contributions from both the interior and
the boundary �K of K , we introduce the following notation with cell and edge residuals:

RT,K =‖−U̇T−∇ ·(UFUT)+��UT‖K (32)

rT,�K = 1
2‖�[n·∇UT]‖�K\�+‖n·UFUT−�n·∇UT+�(g−UT)‖�K∩� (33)

Using the Cauchy–Schwartz inequality we can estimate the discretization error by

〈RT(UT),�T−��T〉�×I�
∑

K∈K

∫
I
(RT,K ‖�T−��T‖K +rT,�K ‖�T−��T‖�K )dt (34)

Moreover, using the trace inequality ‖v‖�K�C(h−1/2
K ‖v‖K +h1/2K ‖∇v‖K ) (see [23]) and the inter-

polation estimate ‖�−��‖K�C(kn‖�̇‖K +hK ‖∇�‖K ), t ∈ In (see [21]), we can estimate (34)
with

〈RT(UT),�T−��T〉�×I�
∑

K∈K
�T,K�T,K (35)
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where �T,K and �T,K are time-averaged element indicators given by

�T,K =
∫
I
(RT,K +h−1/2

K rT,�K )dt (36)

�T,K =C
∫
I
(kn‖�̇T‖K +hK ‖∇�T‖K )dt (37)

Remark 3.1
If �T is sufficiently regular we may use dual weights of the form �T,K =(kn‖�̇T‖K +hmK‖Dm�T‖K ) with m�1, thus obtaining a higher order on the factor hmK . However, for complicated
flows, relying on less regularity of the dual problem may be a more robust alternative in practice.

3.3. Estimates of the modelling error

Starting from the definition of the modelling error (27) we obtain

mF(uF−UF) = aT(UF;uT,�T)−aT(uF;uT,�T) (38)

=
∫
I
(uT,UF ·∇�T)dt−

∫
I
(uT,uF ·∇�T)dt (39)

= −
∫
I
(uT∇�T, (uF−UF))dt (40)

which implies that

mF(v)=−
∫
I
(uT∇�T,v)dt (41)

is the relevant goal functional for the fluid solver if we want to determine the original target
quantity mT(uT) accurately.

To derive an error representation formula for mF(·) we introduce the following dual fluid flow
problem: find (/F,	)∈VF such that

a′
F((v,w),(/F,	)=mF(v) ∀(v,w)∈VF (42)

where the bilinear form a′
F(·, ·) is defined by

a′
F((v,w),(/F,	)) =

∫
I
(v̇,/F)+(uF ·∇v,/F)+(v ·∇UF,/F)+�(∇v,∇/F)

− 1

�
(∇ ·v,	)−(w,∇ ·/F)dt (43)

Setting v=uF−UF and w= p−P and using the definition of the dual problem (42) we obtain

mF(uF−UF) = a′
F((uF−UF, p−P), (/F,	)) (44)

= aF((uF, p), (/F,	))−aF((UF, P), (/F,	)) (45)

= 0−aF((UF, P), (/F,	)) (46)

= −aF((UF, P), (/F−�/F,	−�	)) (47)

where we have used the Galerkin orthogonality to subtract interpolants (�/F,�	)∈WF,h,n .
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Defining the weak residual RF(UF, P)∈V∗
F by

〈RF(UF, P), (v,w)〉�×I =−aF((UF, P), (v,w)) ∀(v,w)∈VF (48)

we obtain the following error representation formula:

mF(uF−UF)=〈RF(UF, P), (/F−�/F,	−�	)〉�×I (49)

This is just the discretization error resulting from the finite element method for the Navier–Stokes
equations. Note that we do not get any modelling error terms, since we assume that the input to
these equations are exact.

Breaking the discretization error (49) into a sum over the elements and estimating using the
Cauchy–Schwartz inequality we obtain the following a posteriori error estimate:

mF(uF−UF)�
∑

K∈K
qF,K ·xF,K (50)

where the time-averaged element indicators qF,K and weights xF,K are given by (see [7])

qF,K =
∫
I
(R1 R2)dt, xF,K =

∫
I
(W1 W2)dt (51)

where

R1=‖f−U̇F−(UF ·∇UF)+��UF− 1

�
∇P‖K + 1

2
h−1/2
K ‖�[n·∇UF]‖�K\� (52)

R2=‖∇ ·UF‖K (53)

W1=C1(kn‖/̇F‖K +hK ‖∇/F‖K ) (54)

W2=C2(kn‖ḣ‖K +hK ‖∇h‖K ) (55)

Remark 3.2
The bilinear form a′

F(·, ·) contains the exact velocity uF which, of course, is unknown. In practice,
uF is therefore approximated by its computed counterpart UF. Numerical experience indicates that
this simplification generally works well.

Remark 3.3
The variational equation (42) corresponds to the following strong form of the linearized dual
Navier–Stokes equations: find /F :�× I →R3 and 	 :�× I →R such that

−/̇F−(uF ·∇)/F+∇UF ·/F−��/F+ 1

�
∇	=W, (x, t)∈�× I (56a)

∇ ·/F=0, (x, t)∈�× I (56b)

/F=0, (x, t)∈�\�out (56c)

�n·∇/F+n
(
uF ·/F− 1

�
	

)
=0, (x, t)∈�out (56d)

/F(·, T̂ )=0, x∈� (56e)
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1408 M. G. LARSON, R. SÖDERLUND AND F. BENGZON

where (∇UF ·/F) j =(� jUF) ·/F, and W=−uT∇�T. Note that the dual problem is evolved back-
wards in time, starting from t= T̂ .

3.4. A posteriori error estimate for the coupled problem

Combining the error representation formula (28) for the original coupled problem with the indi-
vidual a posteriori error estimates for the heat transfer (35) and fluid flow problems (50) we obtain
the following a posteriori error estimate:

mT(uT−UT) �
∑

K∈K
�T,K�T,K +qF,K ·xF,K (57)

≡ ∑
K∈K


K (58)

where we introduced the element indicator 
K . We note that the resulting a posteriori error estimate
involves standard dual weighted residual contributions from the heat transfer and the fluid flow
problems, where the particular weights account for the propagation of an error from the fluid flow
problem to the heat transfer problem. As previously mentioned, the a posteriori error analysis for
nonlinear equations is not as straightforward as for linear ones, and the error bounds are in general
not mathematically rigorous due to the linearization of the dual problems.

3.5. Adaptive algorithm

Starting from the a posteriori error estimate (57) a basic adaptive algorithm takes the form:

Algorithm 1
1. Solve the primal problems, starting with the Navier–Stokes equations (1) to obtain the fluid

velocity uF, and then solve the heat equation (2) with uF as an advection field for the temper-
ature uT.

2. Solve the dual heat transfer problem (20), using the specified goal functional mT(·) as right-hand
side, for the dual temperature �T.

3. Use �T to compute the modelling functional mF(·), defined by (41), and solve the dual linearized
Navier–Stokes equations (56) for the dual velocity /F and pressure 	.

4. Compute the error indicators 
K and use them together with a refinement criterion to select
elements that contribute the most to the error. Refine the selected elements.

5. Repeat steps 1–4 until satisfactory results have been obtained.

Note that each loop of Algorithm 1 involves two inner timeloops. First, the primal equations
must be solved from t=0 to t= T̂ , and then the dual equations must be solved from t= T̂ to
t=0, that is, the primal equations must be solved and their solutions stored before we can start
solving the dual equations. This is computationally expensive, but might still be a faster way of
obtaining accurate values of the goal functional than to solve the primal equations on uniformly
refined meshes.

Remark 3.4
We use the common refinement criterion: refine all elements K such that


K�� max
K∈K


K (59)

where 0��<1 is a user-defined parameter.
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3.6. A special goal functional: time-integrated heat flux

Let us assume that the desired goal quantity is the time-integrated flux,∫
I
(−�n·∇uT,1)�goal dt (60)

through one of the hot boxes with boundary �goal. To compute this, given the discrete solution UT
we note that Green’s formula gives

(�n·∇uT,v)� = (u̇T+∇ ·(UFuT),v)+(�∇uT,∇v) (61)

= (−�(uT−g),v)� (62)

where we used the variational formulation (9a) and the boundary conditions for UF. Although these
three expressions are equivalent for the exact solution uT they are not for the discrete solution UT.
Using (61) to compute the numerical heat flux avoids evaluating the normal derivative of UT, and
also results in a higher rate of convergence [12]. We therefore define the affine functional

m̃T(UT)=
∫
I
(�(UT−g),�)� dt (63)

where �=1 on �goal and �=0 on �\�goal. Using this definition we obtain the following error
representation formula:

m̃T(uT)−m̃T(UT) =
∫
I
(�(uT−g),�)� dt−

∫
I
(�(UT−g),�)� dt (64)

=
∫
I
(��,uT−UT)� dt (65)

≡mT(uT−UT) (66)

where our goal functional mT(·) was introduced. Using (66) as the right-hand side in (20) gives

mT(v)=
∫
I
(v̇,�)−(v,UF ·∇�)+(�∇v,∇�)+(�v,�)� dt (67)

This variational dual heat transfer problem is equivalent to the following strong form: find the dual
temperature �T :�× I →R such that

−�̇T−UF ·∇�T−∇ ·(�∇�T)=0, (x, t)∈�× I (68a)

�T=0, (x, t)∈�\(�box∪�out)× I (68b)

−n·�∇�T=�(�T−�), (x, t)∈�goal× I (68c)

−n·�∇�T=��T, (x, t)∈�box\�goal× I (68d)
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n·�∇�T=0, (x, t)∈�out× I (68e)

�T(·, T̂ )=0, x∈� (68f)

Remark 3.5
The dual problems are solved only once, and then backwards over the entire time interval I from
t= T̂ to t=0, for each adaptive mesh refinement loop. This procedure works since mT(·) is a linear
functional acting on functions defined on the space–time domain VT, that is, mT(uT) is a quantity
weighted in both time and space of the form mT(uT)=∫

I (uT,�)dt with weight �. In contrast,
had we been interested in, for instance, a functional of the form mT(uT)=maxT∈I (uT,�), then
it would have been necessary to solve a dual problem starting at the end of each time step and
then consider the maximum of all the errors on I . Of course, this would be computationally very
expensive.

4. NUMERICAL EXAMPLES

In this section we illustrate the error estimation methodology of Algorithm 1. The goal of the
computation is the accurate computation of the heat flux out of a hot box, as defined by the goal
functional mT(·). We study the performance of the algorithm by looking at the spatial adaptation
of the mesh and aim at obtaining a good distribution of nodes for this particular target quantity.
However, we do not consider the temporal adaptation of the mesh.

4.1. Setup

4.1.1. Geometric specifications. The outer dimensions of the channel �0 are �0={x :0�x�12,
0�y�4,0�z�4}. The inflow and outflow regions are given by �in={x : x=0,0�y�4,3�z�4},
and �out={x : x=12,0�y�4,0�z�1} (see Figure 1). We shall present numerical results for two
different geometries. In the first case, we study a single hot box B with dimensions

B={x :6�x�7.5,1.5�y�2.5,1.5�z�2.5} (69)

In the second case, we have two boxes

B1={x :8.25�x�9.75,1.5�y�2.5,2�z�3} (70)

B2={x :4.5�x�6,1.5�y�2.5,1�z�2} (71)

The computational domain is thus either �=�0\B or �=�0\(B1∪B2).

4.1.2. Parameter settings and boundary conditions. The parameters for the Navier–Stokes equa-
tions (1) are �=0.01 and �=1. The low value of the viscosity � means that we have a Reynolds
number of order 102 (since the typical velocity and length scale are 1). The velocity inflow profile
is vin= y(y−4)(z−3)(z−4).

For the heat equation (2) �=0.01, �=g=1 on �box, �=0 on �out, and �=106 on the rest of
the boundary �.

In all simulations, the number of time steps were 4000 with a uniform time step of k=kn =0.005.
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4.2. Numerical methods

4.2.1. Navier–Stokes equations. The finite element method (1) gives rise to the following Crank–
Nicolson-type time-stepping scheme

⎡
⎣ 1

k
M+ 1

2
(�A+N) BT

B 0

⎤
⎦

[
Un
F

Pn−1/2

]
=

⎡
⎢⎣

(
1

k
M− 1

2
(�A+N)

)
Un−1
F

0

⎤
⎥⎦ (72)

where the matrices involved correspond to differential operators as follows, M∼ I d , A∼−diag�,
N∼uF ·∇, B∼∇·, and BT∼∇, and where Un

F denotes a vector of nodal values of UF at time tn ,
n=1, . . . ,N , and similarly for the pressure P.

The matrix elements Mi j , Ai j , . . . , are evaluated for standard trilinear shape functions on a
hexahedral mesh of the domain�. The mesh can be locally refined by splitting each hexahedron into
eight similar subhexahedra. When two hexahedra of different sizes meet, we use the constrained
hanging node technique (cf. [8]) to preserve the continuity of the finite element functions. A
restriction is made on the mesh that no neighboring elements can differ more than one level of
subdivision.

To cope with convection-dominated flows we have added a streamline–diffusion [24]-type term
NNT, where  is a stabilization parameter, to the matrix �A+N. However, when running the
simulations presented in this paper we have not found it necessary to use this stabilization.

In order to solve the linear system (72) we have used an inexact matrix factorization technique.
The main idea is to replace the global coefficient matrix with its incomplete block LU-factorization.
In doing so, (72) can be approximately solved by performing the following three steps:

1. (
1

k
M+ 1

2
(�A+N)

)
Ũn
F=

(
1

k
M− 1

2
(�A+N)

)
Un−1
F (73)

2.

BM−1BTPn−1/2= 1

k
BŨn

F (74)

3.

Un
F= Ũn

F−kM−1BPn−1/2 (75)

This is a discrete Chorin-type method involving a pressure Poisson equation (74), which intro-
duces a certain amount of stabilization into the scheme. In particular, this stabilization allows for
the use of equal-order interpolation spaces Vh and Qh for the velocity and pressure, respectively
(see [5]).

4.2.2. The heat equation. Similar to the Navier–Stokes equations, the prototype finite element
method (19) yields the following Crank–Nicolson time-stepping scheme for the heat equation(

1

k
M+ 1

2
A

)
Un
T=

(
1

k
M− 1

2
A

)
Un−1
T +G (76)
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where M∼ I d , A∼−�, and G represents the load vector arising from the boundary conditions. To
be able to handle advection-dominated heat flows we have also here added a streamline–diffusion
term to A.

Needless to say, when calculating the indicators 
K , we approximate the continuous duals �F, 	,
and �T with their discrete counterparts UF, � and �T, which are solved with the same numerical
methods as the primal problems and on the same meshes.

Finally, we mention that to save computer time and memory we store the velocity UF needed
for the linearized Navier–Stokes dual only for every 40th time step (i.e. the discrete dual equation
is only reassembled every 40th time step).

4.3. Example 1—one hot box

We consider a case with one interior hot box B, and the time-integrated flux goal functional (66)
with �goal=�box. The problem is solved using the adaptive procedure of Algorithm 1 with a mesh
refinement strategy using �=0.1. After four refinements we obtain the mesh shown in Figure 3.

In Figure 4 we show a series of cross-sectional images of the temperature isocontours around
the box. Streamlines of the velocity field is displayed in Figure 5 showing the evolution of the
flow pattern of the advection field.

From Figure 3 it can be clearly seen that the mesh refinement is localized to the vicinity of the
box, as can be expected if the heat flux out of the box is the quantity of interest. To study the
convergence of this target quantity we used a ‘truth-grid solution’ as a reference value, that is,
the time-integrated flux obtained from a computation on a big uniform mesh with roughly 3×105

elements with additional layers of refinement around the box (see Figure 6). After 15 refinements,
using �=0.65, we obtained the convergence plot of Figure 7, which shows the relative error
(compared with the reference value) versus the number of elements (DOFs). Using a simple linear
regression we find the convergence rate to be close to 4. The obtained value of the time-integrated
heat flux computed on the ‘truth-grid’ was −1.16×103.

In Table I we show the accumulated computational time after a given number of adaptive
refinement loops compared with the time required to solve only the primal equations on the ‘truth-
grid’. These results clearly illustrate the advantage of an adaptive mesh refinement, since sufficient
accuracy of the goal quantity is obtained with considerably reduced computational time.

Figure 3. Refined mesh with one hot box after four mesh refinements.

Copyright q 2008 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2008; 57:1397–1420
DOI: 10.1002/fld



ADAPTIVE FINITE ELEMENT APPROXIMATION 1413

Figure 4. Isocontours of the temperature within the plane y=2 at three different time steps n:
(a) n=400; (b) n=2000; and (c) n=4000.

4.4. Example 2—two hot boxes

In our next numerical example we study a case with two hot boxes B1 and B2 located within
the channel, see Figure 1. The parameter settings and initial conditions are the same as for the
previous case with one hot box. As before, the target quantity is the time-integrated heat flux out
of one of the two boxes.

In Figure 8, we show the resulting meshes when either B1 or B2 is used as target box. As expected,
the mesh refinement is made almost solely around the target box. However, more refinements are
made around B2 when B1 is the target box than vice versa. This is explained by the fact that the
upstream box B2 influences the flow around the downstream box B1, and it is therefore important
to resolve both the region around B2 and the region around B1. The evolution of temperature and
streamlines of the advection field are shown in Figures 9 and 10 (with B2 as target box).

To try to understand the mesh refinement process we study the element residuals �K shown
in Figure 11. Recall that these are one half of the element indicators 
K =�K�K (the other half
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Figure 5. Streamlines of the velocity field seeded within the plane y=2 at three different time steps n.
Note how the box divides the flow into two separate swirls: (a) n=400; (b) n=2000; and (c) n=4000.

being the dual weights �K ), which are used to select elements to be refined. From Figure 11 it
seems that the residuals are big around the boxes and near the inflow and outflow. This is natural
since we can expect the solutions to have large gradients in these regions, and, consequently,
one might expect to see mesh refinement there. The reason why no refinements have been made
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Figure 6. The ‘truth-grid’.

Figure 7. Comparison between the target quantity and a reference value that
has been calculated on a ‘truth-grid’.

Table I. Computational time versus the number of mesh refinements
compared to the computational time required to solve only the

primal problem on the ‘truth-grid’.

Refinements CPU time (h)

1 1
5 5
10 12
15 20

‘Truth-grid’ 75
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Figure 8. Refined meshes with two interior boxes and with �B1 =�goal (left) and �B2 =�goal (right).

Figure 9. Isocontours of the temperature within the plane y=2 at three different time steps n, and with
�B2 =�goal: (a) n=400; (b) n=2000; and (c) n=4000.
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Figure 10. Streamlines of the velocity field seeded within the plane y=2 at three different time steps n,
and with �B2 =�goal: (a) n=400; (b) n=2000; and (c) n=4000.

except around the boxes can be understood by looking at the dual solutions. In Figures 12–14 we
show the evolution of the dual temperature. From these figures it is obvious that the only regions
important to resolve to accurately determine the heat flux lies around the boxes. Thus, since the
dual solutions are localized to the boxes, and especially to the target box, the dual weights will
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Figure 11. Element residuals on the refined mesh. Around the box, were refinements have been
made, the residuals are close to zero, but close to the other box, were almost no refinements

have been made, the residuals are large.

Figure 12. Dual temperatures after 40 time steps. The dual solutions, which are being weighted with the
residuals in order to obtain the refinement indicators, are clearly localized around the target box.

contribute to the element indicators only there. Hence, the dual information pinpoints the important
regions for computing the target quantity, and as a consequence valuable computational resources
can be saved by concentrating the computational efforts to these regions.

5. CONCLUSIONS

We have presented an a posteriori error estimation framework for a one-way-coupled system
describing heat transport in time-dependent incompressible fluid flow, together with adaptive
algorithms for automatic construction of meshes tailored for the computation of specific goal
functionals. The a posteriori error estimates account for the goal functional as well as the coupling
between the equations and identifies in what sense the flow field must be accurate in order to
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Figure 13. Dual temperatures after 2000 time steps. Note the lightly shaded areas that are important to
resolve in order to accurately determine the heat flux.

Figure 14. Dual temperatures after 4000 time steps. Note the difference from Figure 12, which implies
that at the end of the simulation, only the flow very close to the box is important to accurately compute,

whereas in the beginning the flow near the inflow is also of importance.

obtain accuracy in the goal functional. The approach is demonstrated on a three-dimensional test
case involving non-stationary flow in a channel with immersed boxes. The goal quantity is the
integrated heat flow through the boundary of one of the boxes. It is shown that the adaptive
algorithm identifies areas where increased mesh resolution is needed, typically in the vicinity of
the box of interest but also in upstream areas that influence the flow around the box of interest.
We emphasize that these results are obtained automatically without any user interaction other than
specification of the box of interest. We conclude that our results indicate that duality-based adaptive
algorithms may be useful also in more complex fluids applications where it may be difficult and
time consuming to design a suitable mesh given a computational goal. In future work we plan on
addressing heat-driven flow, which is modelled by a two-way coupled system and also test the
method in more complex examples.
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